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In this paper we consider a lattice gas as a discrete Markov process, with a 
Markov operator 9 acting on the phase space of the lattice gas cellular 
automata. We are interested in the asymptotic properties of the sequences of 
densities in both Liouville and Boltzmann descriptions. We show that under 
appropriate hypotheses, in both descriptions, the sequence of densities are 
asymptotically periodic. It is then possible, by introducing a slight modification 
in the transition process, to avoid the existence of cycles and to ensure the 
stability of the stationary densities. We point out the particular part played by 
the regular global linear invariants that define the asymptotic Gibbs states in a 
one-to-one way for most models. 

KEY WORDS: Lattice gases; cellular automata; discrete stochastic processes; 
asymptotic properties of lattice Boltzmann equation. 

I N T R O D U C T I O N  

This  p a p e r  is the c o n t i n u a t i o n  o f  the  w o r k  p resen ted  in ref. 1. We  are  

in teres ted  here  in the  long- t ime-sca le  b e h a v i o r  o f  lat t ice gases in b o t h  
B o l t z m a n n  and  Liouvi l le  descr ip t ions ,  still wi th in  the  con tex t  o f  discrete  

M a r k o v  processes.  In  the Liouvi l le  descr ip t ion ,  a la t t ice  gas ce l lu lar  

a u t o m a t o n  ( L G C A )  is ideal ized as a fuliy d iscre te  M a r k o v  process.  T h e  

c o r r e s p o n d i n g  M a r k o v  o p e r a t o r  will be deno t ed  by ~ and  we  will s tudy  the  

a sympto t i c  b e h a v i o r  of  dens i ty  sequences:  f,,+~ = 9(f, ,) .  W e  will a lways  
cons ide r  tha t  the  M a r k o v  kerne l  obeys  a semi-de ta i led  ba lance ;  this hypo-  

thesis is s t anda rd  for h a v i n g  an H - t h e o r e m .  
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In ref. 1 we investigated the global linear invariants of LGCA and 
showed that the so-called "regular" ones are of particular interest for the 
dynamics. 

In this paper, for LGCA on periodic lattices: 

1. We exhibit the existence of cycles for the Liouville equation. If  the 
transition probabilities obey suitable properties, we prove that these cycles 
are the attractors of the system and that any sequence of densities evolves 
toward a limit cycle. 

2. We present exact stability results in Boltzmann's description. We 
exhibit the existence of cycles for the Boltzmann equation and show that 
for most models these cycles are asymptotically stable and are the (strictly 
positive) attractors of the system. 

3. In order to avoid the occurrence of these cycles, the transition 
process must be modified by adding more stochasticity. We investigate here 
a simple modification that consists in randomly selecting, at each time step 
and after the collision stage, between performing a displacement or a new 
collision stage. For such a modified LGCA we will show that the attractors 
are now stationary densities in both descriptions. Unfortunately, the 
diffusive hydrodynamics is affected. For instance, in the F H P  model, a self- 
diffusion term appears in the continuity equation. 

The paper is organized as follows. 
Section 1 is devoted to a presentation of the main results. After intro- 

ducing the notations we recall the results of ref. 1 that will be required here. 
The results of the present study are presented in Section 1.4. 

In Section 2 we are interested in usual stochastic LGCA for which 
collision and propagation steps alternate. The fixed points of pk where 
k~> 1 is an integer, will be characterized. Under restrictive properties, 
denoted by (P1)-(P4),  we prove that for any initial condition f0, the 
sequence f,,§ = 52(f,,) is asymptotically periodic, the actual period of the 
limiting sequence being an integer factor of the period T of the free 
propagation operator. 

In Section 3 we study the solutions of the so-called "Boltzmann equa- 
tion". The phase space of an LGCA is embedded in a finite-dimensional 
linear vector space. Thus, at each density f we can associate a factorized 
density, denoted by Fact(f) ,  which has the same mean population per 
velocity channel as f. The Boltzmann hypothesis for LGCA consists in 
assuming that "particles" which enter a "collision" have no prior correla- 
tions. From a statistical point of view, the dynamics of the LGCA is then 
modeled by the operator [ Fact o ~ ] and we are interested in the asymptotic 
behavior of sequences f,, + ~ = [ Fact o ~2 ] (f,,), where f0 is itself a factorized 
density. This yields a recurrence relation on the corresponding mean 
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populations usually called the "Boltzmann equation" of the LGCA [see 
relation (8)]. This equation must be regarded as a discrete dynamical 
system on the mean populations. We are first led to determine all the 
possible attractors: as in the Liouville approach, we also expect to obtain 
limit cycles. We then begin by studying the fixed points of [Fact  o ~]k, 
where k is the integer period of the cycle. For a wide class of models, these 
cycles are only related to a particular subset of the linear fixed points of ~2 k, 
called regular k-invariants. These regular k-invariants are directly con- 
nected to the local invariants and can be entirely determined. Therefore, for 
these models, we can obtain all possible cycles of the "Boltzmann equa- 
tion", their period being always an integer factor of the period T. We will 
then prove that these cycles are conditionally asymptotically stable. 
Moreover, any sequence of mean populations which stays in a compact 
subset of ]0,1[ is asymptotically periodic: the previous cycles are the 
attractors of this dynamical system. 

In Section 4 we then examine a possible modification of the transition 
process which yields, always with the previous properties P(i), the con- 
vergence of any sequence (f,,) to a fixed point of ~. The necessity of modi- 
fying the transition process in order to reach more stochasticity is not new. 
In earlier works ts'9' lO~ some authors proposed to modify the streaming 
process by inserting a stochastic stirring updating. Here, the modification 
consists in introducing an independent random variable--say 3 ~ { 0, 1 } -  
which will govern the free propagation stage. After the collision step, and 
on the whole lattice, we will perform the propagation if ,7= 0 or another 
collision if • = h The local collisional invariants and the Gibbs states of 
are not modified. We then also avoid periodic behavior in the Boltzmann 
equation: for a wide class of models, the fixed points of Fact o ~2 (i.e., the 
Gibbs states of ~) are now the only (strictly positive) attractors and they 
are all conditionally asymptotically stable. Moreover, any sequence of 
mean populations which stays in a compact subset of ]0,1[ is then con- 
vergent. Unfortunately, as mentioned previously, the diffusive hydro- 
dynamics is modified: A self-diffusion mass current appears in the FHP 
model. 

1. P R E S E N T A T I O N  

1.1. N o t a t i o n s . T h e  Liouvi l le  Equat ion 

One can think of a lattice gas cellular automaton (LGCA) as a finite 
collection of particles, moving at integer times from nodes to nodes on a 
periodic, regular D-dimensional lattice s generated by the D vectors 
(e~ ,..., eD). At any time the velocity of each particle is selected from a finite 
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set of  b possible velocities (cl ..... %), each cj being an integer combinat ion  
of the el. 

Although it is ra ther  straightforward to generalize all the subsequent 
results to models  with an arbi t rary number  of  particles per velocity 
channel, for simplicity we will restrict ourselves to models  obeying the 
so-called exclusion principle: at most  one particle with a given velocity on 
a given node. The state of  a node at a given time is then described by a 
Boolean vector  X = (Xt ..... Xo) which belongs to the set E = {0, 1} b. That  
is, Xj = 1 stands for the presence of a particle with velocity ej and Xj = 0 for 
its absence. The configuration of the whole lattice at time t is a Boolean 
field n(., t) of  W = E -~. This system evolves by performing at each time t 
the two following steps: 

1. Collision step: The input state X = n(~, t) of  each node ~ is changed 
into a state Y = m(~, t) according to a node- and t ime-independent  transi- 
tion probabil i ty  ,z(X ~ Y). 

2..Propagation step: After having performed the collision step on the 
whole lattice, each particle moves according to its velocity. Hence the 
componen t  nj of  the output  state n(~, t + 1) of  a node ~ at t ime t + 1 is set 
to mj (cc -  ej, t). 

The most  popular  example of  such system is the F H P  ~2~, model  which 
provides a tool to simulate 2D incompressible Navie r -S tokes  equations. 

The set W is embedded into [ R b ] ~e. The shift opera tor  ~ from [ R b ] u' 
to [ R b] ~' is defined by 

~ :  [" Rb ' ]  el' ....-.~ ~ I ~ / V ~  ~ ,,.~ : [ ~ ( ~ ) ' ] ( ~ . ) :  ( ~ l ( 0 ( - - C l )  ..... (~b((~.--  Cb))  

This opera tor  is an or thogonal  linear map  on [ R b] e" for the scalar product  
defined by 

b 

a~f5 a j = l  

The global transition probabil i ty d ( n  ~ n') from a configuration n to a 
configuration n' is the product  

~4(n ~ n')  = I-I ~(n(~) ~ n'(~)) 

The local transition probabilit ies are such that  

V X e E ,  ~ ,z(X ~ Y) = 1 
YGE 
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The hydrodynamic properties of these discrete systems are usually 
investigated via the standard methods of classical statistical mechanics, t3~ 
The system is then considered as a Markov process on W. Let Po be an 
initial probability measure on W; then the probability p,+l(n) for finding 
the system in the configuration n at time t + 1 is related to the probability 
measure p, at time t through the relation 

p , + l ( n ) =  ~ d ( m - - * ~ - l n ) p , ( m )  
m e W  

(I) 

This relation defines a Markov operator s on the set of all real-valued 
functions on W: 

f ~  9.(f)/s ~ 3(('(m, n)f(m) (2a) 
m ~ W  

where the Markov kernel is given by 

,~#(m, n ) = d ( m ~  ~-ln) (2b) 

The statistical evolution of the LGCA is described by the following 
recurrence relation: 

P,+ l = s = s  l(po) (3) 

Relation (1) is usually referred as the Liouville equation of the LGCA; it 
is the Chapman-Kolmogorov equation of the process. For the following we 
will reserve the notation p for a density (i.e., a probability) and f for a 
general real-valued function on W. 

1.2. The  B o l t z m a n n  E q u a t i o n  

I f p  is a density on W, we will denote N E ( [ 0 ,  1]b) ~ the associated 
field of mean populations. That is 

N =  ~. np(n)  (4) 
n E W  

The Boltzmann hypothesis in lattice gases consists in assuming that par- 
ticles which enter a collision have no prior correlations. Hence the density 
pin of input states is fully factorized through the nodes and the velocity 
channels. It is then uniquely defined by its mean population field N: 

b 

Pin(n) = I~ I~ [NJ(~)] 'r [ 1 - N j ( ~ ) ]  l-"jt~) (5a) 
a~-~ '  j = l  

822/81/I-2-27 
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For the following, if V is a vector in ff~b (or in [Rb] '~) ,  we will denote by 
Vr the vector of R b (resp. [ R b]~') whose components are Vff(1 - Vj) [resp. 
Vj(~)/[ 1 - Vj(~)]]. Let us notice that a strictly positive factorized density 
[i.e., p ( n ) > 0 ,  Vn~W]  given by (5a) can also be written as 

pi"(n) = f exp ( (~ ,  n)) ,  f > 0  (5b) 

where ~b is a vector of [R~ -~' whose components are Log(Nj(~)) and 
[ =pi"(0), with 0 being the empty configuration. 

If p, is factorized, the mean population fields N(t) and N ( t +  1) of the 
two densities p, and ~2(p,) are then related through 

Nj(~+cj, t+l)-Nj(~,t)=Og[N(~,t)], j=l,...,b (6a) 

where for each U in R b, O[U] is the following polynomial vector of Rb: 

8 j [U]  = ~" ,~(X --, Y)(Yj--  Xj) 
X , Y ~ E x E  

b 

• 1~ [ U ~ ] ~ x k ) [ 1 - U k ]  (1-xk), j = l  ..... b (6b) 
k = l  

The relations (6) are usually referred to as the Boltzmann equation of 
the LGCA. For brevity we will also write (6) as the following recurrence 
relation on vectors of ([0, 1]b)~z~: 

N ( t +  1)=  ~-(N(t))  (7) 

Let us note that in relations (6), the components of ~ are polynomial func- 
tions in the components of N(cc), so we can extend the action of f f  on the 
whole set [Nb] ~. An other way to look at the Boltzmann equation of a 
lattice gas is to consider it as a recurrence relation on probability densities 
on W. Indeed, from a general point of view one can associate to each 
density p on W having a mean populations field N a fully factorized density 
Fact(p) given by relations (5). Then, the recurrence relations (6)-(7) on 
mean populations are equivalent to the following recurrence relation on 
densities on W: 

P,+ 1 = Fact(i~(p,)) = [Facto E l ' +  l (Po) (8) 

1.3. The  L inear  I n v a r i a n t s  

In this paper, we are interested in exact results concerning the long- 
time behavior of density sequences which obey the Liouville equation (3) 
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or the Boltzmann equation (8) when the transition probabilities obey a 
semi-detailed balance. That is 

VX ~ E, ~ ,z(Y ~ X) = 1 (9) 
Y E E  

We are first interested in the fixed points of both operators ~2 k or 
[Fact  o s  k. For that purpose, we introduce the Markov kernels of any 
integer order k by setting 

3r k(m, n) = ~ Jtr(m,nl) 3g'(n 1, n2) �9 �9 �9 ,X'r(nk- 1, n) 
( n l , . . . , n k _  1 ) E W k - I  

Thus, s is expressed with the kernel of order k by replacing in the defini- 
tion (2) of s J f  by ~r The local linear invariant are defined as follows ~4~. 

D e f i n i t i o n  1. A local linear #wariant is a vector ~b of R b such that 

VX, Y e E x E ,  a,(X--, Y)< ~, X - - Y >  = 0 

The local linear invariants constitute a linear subspace of R b, denoted 
~toc. The linear fixed points of s will be called global linear k-invariants. 
They are defined as follows. 

D e f i n i t i o n  2. A global linear k-invariant is a vector tb of [Rb] ~" 
which verifies 

Vm, n ~ W x W ,  2Kk(m, n ) ( ~ ,  m - -  n> = 0  

The global linear k-invariants constitute a linear subspace of [ •b] ~ which 
will be denoted as ~ r  A vector �9 of [ ~ b ] ~  is a global linear invariant 
if and only if the factorized density p ( n ) = l e x p ( ( ~ ,  n)) ,  where ~ is a 
normalization constant, is a fixed point of ~2 k (see Proposition 1 in the next 
section). Thus the global linear invariants are obviously connected to the 
(time-periodic) cycles in the Boltzmann equation; using properties of the 
information function, we can prove that any fixed point p of [ Fact o ~ ] k is 
necessarily a factorized fixed point of t2 k. But this fixed point must also be 
such that the successive iterates 9."(p) for any n remain factorized. The 
Boltzmann equation is not concerned with the whole set of global linear 
invariants of the Markov operator s Nevertheless, among the global linear 
invariants one can then point out a simple subspace which obeys this later 
factorization property. This subspace is the set of the global regular 
k-invariants introduced and studied in ref. 1. They are defined as follows. 
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D e f i n i t i o n  3. A global regular k-&variant is a vector r of [Rb] ~ 
such that 

~ k r 1 6 2  and Y e s 2 ' ,  r  ..... [ ~ k - t r  r 

The global regular k-invariants constitute a linear subspace of [ ~b] 
denoted ~ J .  These regular k-invariants are actually global invariants in 
the sense of Definition 2. This type of global invariant exists in any LGCA 
model and plays an important part in applying the linear response theory 
to LGCA. They are easily determined from the local ones and they contain 
the so-called dynamical invariants mentioned in the literature. The spatially 
homogeneous global linear invariants [that is, ~ ( ~ ) =  ~(fl) for any ~, fl] 
are associated with the conservation of a given total quantity which is the 
sum on the lattice of the same local quantity (such as mass, momentum, 
energy,...). These are regular k-invariants for any order k. But, in general, 
there also exist non-homogeneous global regular k-invariants which yield 
the existence of time-periodic sequences for both the Liouville and 
Boltzmann "equations". 

For a wide class of models, the linear global k-invariants are simply 
reduced to the regular k-invariants. It is the case for models where the 
global transition probabilities satisfy the following three properties~l~: 

(P1) Vn, m e W2, d ( n - ~  m) :~ 0 =~ d ( m  -~ n) ~ 0 

(P2) d ( m  --* n) :/: O, d ( r - ~  n) :~ O, m ~ r ~ d ( m  ~ r) :~ 0 

(P3) n=~ m ~ d ( n - - +  m) < 1 

Properties (P1) and (P2) express a kind of microreversibility or of 
"microsyrnmetry" which is satisfied by all usual LGA. Property (P3) [or  
(P4) given below] expresses the stochasticity of the nontrivial collisions 
and is only satisfied by nondeterministic models (excepting the case where 
the collisions are all trivial). Let us note that it is always possible to modify 
any given model in order to have (P3) [or  (P4)] without changing its local 
invariants or its symmetries. 

The linear global k-invariants are also reduced to the regular 
k-invariants for models which obey the following single property: 

(P4) Vne W, ~ ( n  ~ n)-~O 

The proof is very similar to that of the previous case and will not be given 
here. It is noticeable that (P4) implies (P3) and that in fact it is itself much 
more restrictive than the other three properties. 
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1.4. E x a c t  R e s u l t s  on A s y m p t o t i c  B e h a v i o r  

In the models defined above the global regular k-invariants give all the 
possible (strictly positive) cycles with a given period k of the Boltzmann 
equation. Such a cycle, given by p, + ~= [Fact o ~2]'+~ (p0) will necessarily 
be such that po ( n )=2  exp ( ( ~ ,  n)) ,  where �9 is a global k-invariant, and 
hence a regular k-invariant. 

We will prove here that such Po is then uniquely determined by the 
projection of its mean population No on the subspace of the regular 
k-invariants. In other words, there is a one-to-one mapping between the 
Gibbs states (in the sense of the entropy) of the LGCA and the (global) 
macroscopic conserved variables. Due to the exclusion principle, these 
Gibbs states are Fermi-Dirac distributions. This result is given in Proposi- 
tion 3 and was already reported in ref. 1, where the proof was not pre- 
sented. For the present study it turns out that this proof is the key for 
studying the asymptotic behavior of the LGCA in the Boltzmann descrip- 
tion and it is therefore given in Appendix C. 

Under the properties (P1)-(P3) or simply (P4) we will also prove 
that: 

1. Concerning the Liouville equation, the sequences p , + , = ~ ( p , )  
are always asymptotically periodic. The periodic orbits of (3) are all condi- 
tionally asymptotically stable. This is reported in Proposition 2. 

2. Concerning the Boltzmann equation, the (strictly positive) time- 
periodic solutions are all conditionally asymptotically stable as reported in 
Proposition 5. 

This asymptotic time periodicity at both the Boltzmann and the Liouville 
level of description is a spurious effect of the discretization. It is a conse- 
quence of the existence of fixed points of ~ which are different from those 
of ~. We then propose a simple modification to the transition process 
which ensures that, for any integer k, the fixed points of ~2 k are always fixed 
points of ~. Moreover, the latter are the same as those of the nonmodified 
process. At the Boltzmann level, if all the global linear invariants are 
homogeneous, the only asymptotic states are the usual homogeneous 
Gibbs states. This modification consists in introducing an independent ran- 
dom variable, say ~ ~ { 0, 1 }, which will govern the free propagation stage. 
At each integer time, if ~ = 0, a collision updating followed by a streaming 
updating is performed, while, if S = 1, a collision updating is performed 
alone. 

Under the properties (P1)-(P3) or simply (P4) and for this modified 
model, we prove that: 
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3. Concerning the Liouville equation, the sequences p , + l =  t~(p,) are 
always convergent. The fixed points of (3) are all conditionally asymp- 
totically stable as reported in Proposition 6. 

4. Concerning the Boltzmann equation, the only limiting cycles have 
a time period of 1, that is, they are stationary. These are then the factorized 
fixed points of ~2. Moreover, the strictly positive ones are uniquely defined 
by the mean values of the regular global 1-invariants and they are all con- 
ditionally asymptotically stable. These results are given in Proposition 8. 

One could object that these properties (Pi)~=l.....4 are restrictive and 
are not satisfied by all LGCA. For instance, in the original F H P  model, 
where nontrivial ternary collisions are embedded with a probability equal 
to 1, properties (P3) and (P4) are not satisfied, although in ref. 9 this rule 
is precisely modified in order to satisfy (P3). 

Fortunately, one can show that the above results concerning the 
Boltzmann equation of an LGCA remain true provided that the automaton 
has a suitable number of configurations which are collision-invariant: that 
is, the model has what we call a regular configuration. A precise definition 
is given at the end of Section 3. It turns out that, for models with a regular 
configuration, the periodic sequences of densities, solutions of the 
Boltzmann equation, are only related to the regular invariants. In other 
words, if p , = [ F a c t o i ~ ] ' ( p o )  with pk=po, then there exists a global 
regular k-invariant �9 such that po(n)=  2 exp ( ( ~ ,  n)) ;  see Proposition 4. 
As reported in Propositions 6 and 8, the above stability results for the 
Boltzmann equation are also satisfied by these models. Most LGCA, 
including all usual models used to simulate hydrodynamics (like the F H P  
models), have a regular configuration. 

2. A S Y M P T O T I C  P E R I O D I C I T Y  AT L IOUVILLE LEVEL 
OF D E S C R I P T I O N  

We will say that a sequence (U,,) is k-periodic if for any n, U,,+k---- U,,, 
the actual period being then an integer factor of k. We introduce a 
decomposition of W into disjoint subsets that are similar to the orbits 
for a deterministic dynamical system. For this purpose we will say that 
two configurations n, m define a "k-link" if we have K~(n, r e ) C 0  
or ,r n ) ~ 0 .  We then will say that two configurations n, m are 
k-connected if there exists a sequence no = n, n 1 ..... np = m of configurations 
(with p>~ 1) such that each pair n;, ni+l is a k-link. The relation "to be 
k-connected" on W is an equivalence relation. The corresponding classes 
are thus called k-paths for the Markov process i2: they are the Markov 
chains for the process s If p is an integer factor of k, any k-path which 
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contains a configuration n is obviously included in the p-path which 
contains n. The converse is wrong in general. The phase space structure is 
a priori very complicated since, in general, the paths are not cycles. 
However, for a deterministic model the 1-paths are actually the orbits of 
the associated dynamical system. For the following we will denote by I~1 
the number of elements in a path ~.  We denote by ~ (W )  [resp. ~ (W ) ]  
the set of densities (resp. of real functions) on W. The information function 
.~ on ~ ( W )  is defined by 

.~(p) = ~,p(n) Log(p(n)) (10) 
W 

From the semi-detailed balance and the convexity of x Log x we deduce 
that g,(f2k(p)) <~ ~(p) for all p. Moreover, since x Log x is strictly convex 
on [0,1 ], we have the equivalencdl~: 

~[(t2) k (p)] = .~(p) 

<:> Vn, n', n" EW3J{'k(n ', n) :/{'k(n", n)(p(n')--  p(n")) = 0  ( l l a )  

The fixed points are then precisely characterized by the following proposi- 
tion I~. 

P r o p o s i t i o n  1. Let k >/1 be an integer. A density p is a fixed point 
of (~?)k if and only if it satisfies 

Vn, n ' E W  2, dCk(n ' ,n ) (p(n) - -p(n ' ) ) :O ( l i b )  

It is known that for usual Markov process 16~ any integrable fixed point, say 
f,  of a Markov operator is such that the standard functions f + = sup (f, 0) 
and f -  = s u p ( - f ,  0) are also fixed points. Hence, since W is finite, we can 
extend Proposition 1 to any real function f Thus, relation ( l ib )  gives the 
characterization of any fixed point of (~2) k, in ~(W). Therefore the global 
linear k-invariants as introduced in Definition 2 naturally appear as the 
linear fixed points of (~2) k (by identifying linear forms and vectors). 

As a consequence of this proposition we deduce that a real function f 
is a fixed point of (1~)k if and only if it is constant on each k-path. From 
the definition of the paths, we also deduce that (52)kpreserves the measure 
of the k-paths..In other words, if ~k is a k-path, we have 

Vfe~(W), ~ f(n)= ~ [(s 
n e .q~- n e "JJ~- 

To each real function f on W and each integer k t> 1 we can then naturally 
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associate a fixed point of (~)k. Let us associate to each real function f on 
W the function Fix(k,f)  defined by 

1 
Vn~W, Fix(k,f)(n)=]--~kl~f(n') (12) 

~k 

where ~ is the k-path which contains n. From the above remarks, Fix(k,f)  
is a fixed point of (~)k. Moreover, it is the only fixed point of (~2)ksuch that 
the mean expectation of any k-path is the one of f .  In fact, the operator 
Fix(k,.) is an orthogonal 2 projector on the subspace of all fixed points of 
(~)k. 

We have now all the ingredients to prove the expected asymptotic 
periodicity. Indeed, let then T be the lowest integer such that ~ r  is the 
identity map on W and let us consider a sequence f ,  = ~"(fo) of real func- 
tions of ~(W) defined by its initial value f0- Let us then associate to this 
sequence a periodic sequence (g,) defined by the following relation: 

go=Fix(T, fo), g~ =Fix(T,f,),...,gr_~ = Fix(T, f r _  ~) 
(13) 

gkT+p=gp for any k>~O,p<T 

Each g,, is a fixed point of (~2) r, that is, a cycle for ~. 
We then deduce the following proposition, which characterizes the 

asymptotic (time) periodicity of the sequences (f,)  and the ergodicity of the 
p r o c e s s .  

P r o p o s i t i o n  2. We assume that the global transition probabilities 
{zr obey properties (P1)-(P3) or only property (P4). Let fo be a real 
function on W and (g,,) be the sequence associated to (f,,) by relation (13). 
Then Lim,~ o~(f,,- g,) = 0. 

Furthermore, the sequence (g,,) satisfies 

Vn~W, g.(n) = [~"(go)](n) = go[ ~ - " (n ) ]  (14) 

Moreover, the sequence (f,,) is Cesaro convergent to the fixed point 
of ~2: Fix(1,fo) on W. In other words, we have 

1 n 
, l im [ -  Z f , ]  =Fix(1,fo) 

Ln;=~ J 

The proof is a little lengthy and is given in Appendix A. The main 
argument is the fact that the phase space is finite. Let us notice that, since 
W is finite, the set of all complex functions on W is a finite-dimensional 
vector space. Therefore, the Cesaro convergence is simply a consequence of 

2 For the usual scalar product ~ w f ( n ) g ( n ) .  
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a general ergodic theorem of F. Riesz in Banach spaces. The interesting 
result is the asymptotic periodicity. On the one hand, it shows that any 
eigenvalue of ~ with a unit modulus is a Tth root of the unit, hence a 
fixed point of any (s is always a fixed point of (~)r.  On the other hand, 
it also indicates that the subspace composed of all fixed points of (9) T 
is asymptotically stable, while the points themselves are conditionally 
asymptotically stable [that is, for any f0 such that go = Fix( T, fo), we have 
Lim . . . .  (f,, -- g,,) = 0]. 

Let us then observe that relation (14) simply expresses that the effect 
of the collisions fades away with time. Furthermore, one can prove that the 
operator Fix( T, �9 ) is an orthogonal projector on a subset of all fixed points 
of the collision operator alone. Therefore the process tends to be only 
propagative and defined by the shift operator alone. One can notice that 
the effective period of the limiting sequence (g,,) is an integer factor of T 
which is only determined by fo. If T is a prime number, this period is either 
1 (i.e, the sequence converges to a stationary state) or T itself, which can 
be a large number when dealing with large lattices. This would obviously 
be connected to the time averages which can be used to obtain mean quan- 
tities. However, we do not know if it is possible to obtain these results, 
in the nondeterministic case, under weaker conditions than (P1)-(P3) or 
(P4). 

Let us conclude this section with a remark on deterministic cases. 
Deterministic models are described when the range of {d(n--*n ')} is 
{0, 1}; the relation (9) is then equivalent to the existence of a one-to-one 
operator c# (the so-called microscopic collisional operator) on W such that 
for all n : d ( n  ~ ~g(n)) = 1. The Markov operator ~ is then reduced to the 
Frobenius-Perron operator associated to ~cg. Let T' be the lowest integer 
such that (~rg)r '  is the identity map on W. Then, any sequence (f,,) 
defined by relation (3) is periodic, its period being an integer factor of T'. 
In these conditions the periodicity and the ergodicity are obvious, but in 
general, T' >> T. 

3. A S Y M P T O T I C  PERIODIC ITY  AT B O L T Z M A N N  LEVEL 

3.1. Propert ies of the Regular  Linear Invariants 

From the characterization of the fixed points of s k (Proposition 1) 
and the definition of the linear k-invariants (Definition 2) it turns out that 
a (strictly positive) factorized density p is a fixed point of ~k if and only 
if there exist a global linear k-invariant ~ and a constant ~ such that 
Vn ~ W, p(n) = t exp(( ~, n)  ). A (strictly positive) factorized density is a 
fixed point of ~k if and only if the vector Log(N) is a global linear 
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k-invariant. These factorized densities are Gibbs equilibrium distributions 
for the process ~2 k since they correspond to the minimum of the informa- 
tion function when the macroscopic averages ( 4 ,  N )  of the global linear 
k-invariants are fixed. 

An other important property of the global linear k-invariants is that 
~k preserves the mean expectation of any global linear k-invariant, i.e., 
Vf~ ~(W),  u  O~gk,; 

~.. ( 4 ,  n ) f ( n ) = ~  ( 4 ,  n) ~ ( f ) ( n )  (15) 
W W 

It is not obvious that the set of vectors in [Rb] "~ that satisfies (15) 
coincides with the whole set of global linear k-invariants. It turns out that 
it is true for models which satisfy (P1)-(P3) or simply (P4). 

At the Boltzmann level the asymptotic periodicity is more complicated 
to point out since the operator Fact o P is not linear. As explained in the 
introduction, any factorized fixed point p of ~2 k is not in general a fixed 
point of the "Boltzmann operator" [ Fact o ~2] k, but a factorized fixed point 
p of ~2 k is a fixed point of [Facto ~]k if and only if the successive iterates 
~2"(p) remain factorized. This is a consequence of the decreasing of 
the information .~ when going from p to ~(p) and then from ~(p) to 
Fact(~(p)) (see Appendix B). 

Thus, among all the global linear k-invariants of an LGCA, only some 
of them are relevant for the Boltzmann equation. 

It turns out that the vectors which satisfy a relation similar to (15) but 
for the Boltzmann operator Fact o ~ will define a set of fixed points of 
[Fact  o ~]k. Let us give a formal definition of these vectors which we will 
call the Boltzmann k-invariants. 

Definit ion 4. A Boltzmann k-invariant is a vector �9 of [0~ b] ~' such 
that 

vp e~(w), ~. ( ~, n)  p(n) = ~ ( r  n)  [Fact o .o]k (p)(n) 
W W 

They constitute a linear subspace of [ R ~ ~ that we will denote as B k. 
We will see in the next subsection that, for any LGCA, these vectors are 
linear k-invariants in the sense of Definition 2. For any such vector tp the 
density p,.(n)= [ exp( ((P, n ) )  is a factorized fixed point of ~k; furthermore, 
it is also a factorized fixed point of [ F a c t o r ]  k. We will then prove in 
Proposition 3 that there is a one-to-one mapping between these fixed 
points and their associated mean values of the Boltzmann k-invariants. In 
other words, if N is a mean population vector in (]0, lib) ~, there exists 
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one and only one vector N~ in (]0, l[b) ~" such that Log(Ne) is in B k and 
( ~u, N )  = ( ~u, N,.) for any vector ~ in B k. This N e gives a strict minimum 
for the information function among all N satisfying ( ~, N )  = ( ~, Ne)  for 
any vector ~ in B ~. 

If any fixed point of [ F a c t o r ]  k was associated to a Boltzmann 
k-invariant, this last property would yield a marginal conditional asymp- 
totic stability of any (strictly positive) fixed point of [ Fact o ~]k and the 
asymptotic periodicity for the mean populations. Unfortunately, we have 
not been able to prove this result in general and we suspect that it is 
wrong. However, any factorized density p ( n ) =  f e xp ( (~ ,  n ) )  where t/, is a 
regular k-invariant (see Definition 3) satisfies the factorization condition 
and is a fixed point of [ Fact o ~ ] k. More precisely, ifp0(n ) = f exp((  ~, n)) ,  
where �9 is a regular k-invariant, then at any time t we will have 3 p,(n) = 
f e x p ( ( ~ ' ~ , n ) ) .  Hence p, is factorized and the projection [ ~ ' ~ ] ( ~ )  at 
each node is always a local invariant. We do not enter into details, but 
these two properties will be crucial when performing a standard linear 
analysis (i.e., a Green-Kubo-l ike procedure) in order to obtain asymptotic 
transport properties for these LGCA. 

The regular k-invariants are always Boltzmann k-invariants. It is then 
possible to exhibit a wide class of models where on the one hand the whole 
set of Boltzmann k-invariants coincides with the set of regular k-invariants 
and on the other hand the latter define the strictly positive fixed points of 
[ Fact o ~ ]k in a one-to-one way. 

This is, for instance, the case of models which satisfy (P1)-(P3) or 
simply (P4) and also the case of models which have a regular configuration 
(see the definition below). This latter class encloses most models used to 
simulate hydrodynamics. 

Hence, for all these models when starting with suitable initial conditions 
the mean populations at the Boltzmann level are asymptotically periodic, 
the limit cycles being only defined by the mean initial values of the regular 
T-invariants. 

In ref. 1 we considered a class of models which admit what we have 
defined as a "regular" configuration. This class is of particular interest since 
for these models the (strictly positive) fixed points of [Fact  o ~]k  are only 
those associated to the regular invariants. We will give here a slightly more 
general definition. If a configuration n satisfies ~(n)  = n and sg(n ~ n) --/: 0, 
we will say that it is stationary. We will then say that a stationary con- 
figuration n is ?egular if any other configuration n' such that n' differs from 
n on at most one node and on at most one velocity channel of this node 

3This is easily seen, combining the equivalent relations (D1) of Appendix D with 
relations (6). 
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satisfies d ( n ' ~  n') :~0. It turns out that any regular configuration in the 
sense of ref. 1 is regular within this latter definition. 

For usual LGCA models where all the particles have the same mass but 
different velocities and the local collisions conserve mass and momentum 
(and energy for models with massless particles), the empty configuration is 
regular since any configuration n with only one particle gives rise to a 
trivial collision, i.e., d ( n ~ n ) =  1. The same is true for models with 
particles with different masses if the partial masses are conserved: Most 
models used to describe hydrodynamics fall in this category, and in fact 
most of the LGCA described in the literature. 

3.2. Propert ies of the Bol tzmann k- lnvar iants  

Let us observe that the information function of a factorized density 
with a mean population N is only a function of N, given by 

H ( N ) =  <N, Log(N)> + ( I - N ,  L o g ( I -  N)> 

where I is the vector of [ ~b].~" whose components are all equal to 1. As 
explained in the previous section, the key for the stability study of a limit 
cycle at the Boltzmann level is the fact that this cycle gives an absolute 
minimum of the information function among a set of admissible points. 
This comes from the following general proposition: 

Proposition 3. Let A be a subspace of [ •b] ~. Let N o be a vector 
in (]0, l[b) ~'. Then there exists a unique field N,, in (]0, l[b) ~e which 
satisfies 

V@~A, (@, N~ = ( ~ ,  N,.> (16a) 

Log(1Ne) 6/~ (16b) 

The density f , ( n ) =  ~ exp((Log(N,) ,  n>) among all the factorized densities 
whose mean population field satisfies (16a) is the only one which gives the 
absolute minimum of the information function. 

A proof of a similar result for semicontinuous Boltzmann discrete 
models, based on asymptotic properties of algebroid functions, is given in 
ref. 7. We give in Appendix C a direct proof for LGCA. This proof, which 
is constructive, yields the next lemma and finally the expected stability. 

If in Proposition 3, ~ is the set of the global linear k-invariants, we 
deduce that for any k there is a one-to-one mapping between the factorized 
fixed points of ~k (i.e., the Gibbs states of the LGCA for the process ~k) 
and the mean values of the global linear k-invariants. 
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In deriving the proof of the previous proposition, the following lemma, 
which will be one of the main ingredients in the investigation of the 
asymptotic properties of the Boltzmann equation, can be deduced: 

Lemma 1. Let A be a subspace of [No]e,. Let N,. be a vector in 
(]0,  l ib)  u" which satisfies Log(N, , )eN.  Let 0: be the set of vectors N in 
(]0, l ib)  e', which satisfy 

V ~ e A ,  ( ~ ,  N )  = ( r  N.> 

And let ~ be the closure of IF. Then there exists a real a > 0 such that the 
set ~a of all the points N in F satisfying H ( N ) -  H ( N , , ) < a  is an open sub- 
set of IF. For each 0 < e < a ,  the set of all the points N in ~ such that 
H ( N ) -  H(N,.)~<e is a compact subset of IF,. 

This lemma guarantees that for an initial condition N O in Fo the whole 
sequence of mean populations in the Boltzmann equation will stay in a 
compact subset of (]0, l[b) ~. This is proven in Appendix C. 

It is then easy to show that the Boltzmann k-invariants are actually 
global linear k-invariants. Let q5 be a Boltzmann k-invariant and let us 
consider the initial density f o (n )=  ~ exp ( (~ ,  n ) )  and let N O be its mean 
population vector. Let us set f , = [ [ F a c t o ~ ] k ] ' ( f o )  and let N '  be the 
corresponding mean population. The vector Log(N ~ is equal to �9 and is 
in B k. Furthermore, considering the Definition 4 of B k, we have the rela- 
tion ( ~g, N ' )  = ( ~g, N ~ for any t and any ~ in B k. But, among all the 
vectors N which satisfy this last relation N O is the only one that 
corresponds to the absolute minimum of the information function. Let us 
then observe that the latter decreases between any factorized density p and 
Fact(~2(p)); moreover, the relation .~ (p)=  .~(Fact(~2(p))) implies that ~2(p) 
is itself factorized. It follows that for any t, N ' =  N o and thus fo is a fixed 
point of [-Fact o t2] k and then of 9 *. Hence ~ is a global linear k-invariant. 

Let us now briefly verify that any regular k-invariant is a Boltzmann 
k-invariant. 

Let k be an integer, �9 be a regular k-invariant, and p be any initial 
factorized density with N O as its mean population vector. Let us set p, = 
[ Fact o ~2 ] '  (p) and let N '  be the corresponding mean population. It follows 
that 

~V W 2 
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Since ~ is orthogonal the last sum can be rewritten as 

y '  ( ~ - J ~ ,  ~ - l n )  p(n') d ( n '  --, ~ - I ( n ) )  
W 2 

But since �9 is regular, for any node ~, ~-'qs(0~) is in O~to c and we then 
have 

a(n'(a) ~ ~ - l ( n ) ( a ) ) ( ~ - ' ~ ( 0 Q ,  n'(~) -- ~ - I ( n ) ( a ) )  = 0  

So we deduce that 

( ~, N ' )  = ~' ( ~ - J ~ ,  n ' )  p(n') ~r ~ ~ - l ( n ) )  = ( ~ - ' ~ , N ~  
W 2 

But ~ - ~  is also a regular k-invariant. Hence, the previous relations yield 

( ~ ,  N2) = ( ~ - , ~ ,  N l)  = ( ~ - 2 ~ ,  NO> 

Finally we will have ( ~ , N k ) = ( ~ - k ~ , N ~  But, ~ - k ~ = ~  and it 
follows that any regular k-invariant is then a Boltzmann k-invariant as 
noticed in the previous section. 

Now, for a wide class of models the global regular k-invariants coin- 
cide with the Boltzmann k-invariants as stated in the following proposition, 
proved in Appendix D: 

Proposi t ion 4. If an LGCA model satisfies either properties 
(P1)-(P3) or simply property (P4) or if it has a regular configuration, then 
the set B k of its Boltzmann k-invariants coincides with the set Kg') ~ of 
its regular k-invariants. Let r be the lowest common factor of k and T. 
A factorized density po(n)=texp((cP, n))(t>O) is a fixed point of 
[ Fact o ~ ] k if and only if �9 is a regular k-invariant. It is then a fixed point 
of [ Fact o ~ ]" and of [ Fact o ~ ] r 

3.3. S tab i l i ty  and Per iodic i ty  

We are now in position to study the asymptotic behavior of the mean 
population at the Boltzmann level. For the models considered in the 
previous proposition, we entirely know all the possible cycles of the 
Boltzmann equation. It remains to study their stability and to show that 
they are the only attractors. 

Let us then consider a LGCA which satisfies properties (P1)-(P3) or 
only property (P4), or which has a regular configuration. Let then T be 
the lowest integer such that ~T is the identity map on W. The following 
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proposition characterizes the stability of the fixed points of [ Fac o ~ ] hand 
the asymptotic periodicity of the solutions of the Boltzmann equation. 

P r o p o s i t i o n  5. Let N o be a mean population vector in (]0, lib) ~ 
and let U :~TI be the set of vectors N in (]0, lib) ~, which satisfies 4 

V~eKg'l r, ( ~ , N ) = ( t P ,  No) 

Let Nt r~ e (] 0, 1 [ b)_~ be the unique vector of F trl such that Log(~I I r~) E ~gl r 
and let ~:,,r be the open neighborhood of Ntr ) in  U :trl defined in Lemma 1. 
Then, if No ~ Far, the sequence N,,= [~-r], ,  (No) converges toward N~r). 
Moreover, the sequence {~'(No)} is asymptotically equivalent to the 
T-periodic sequence {~'(N~r))}. 

As noted previously, any regular k-invariant is a regular T-invariant. 
Any (strictly positive) cycle of the Boltzmann equation is a fixed point of 
[ Fact o i3 ] r. From Proposition 4, it is then given by ~ exp((log(~I~ rl), n)  ), 

r, T where Log(~ltr I) e Kg t . The last proposition, which is proved in Appendix 
E, shows that this cycle is conditionally asymptotically stable. Let us con- 
clude this section with the following remark, which shows the spurious 
behavior of the sequence of mean populations. 

Let No be a mean population vector in (]0, l[b) ~ and let us assume 
that the sequence { ~-'(No)} stays in a compact subset o f ( ]  0, 1 [ b)~. By a 
simple adaptation of the proof of Proposition 5 it follows that this 
sequence is necessarily asymptotically periodic with a period which is an 
integer factor of T. Let n 0 = l  < n l  < - - - < n , = T  be the set of all the 
distinct integer factors of T. Since any regular k-invariant is a T-invariant, 
this period will be determined by examining the orthogonal projection of 
No on each subspace Kg't ~. Let j be the lowest integer i such that the 

r, T projection of No on K~j ~ is equal to its projection on Kgj . The effective 
period of {ff '(No) } will be nj. But, although the minimum of the informa- 
tion correspond to ni = 1 (i.e., a fixed point of J~), the value of the informa- 
tion of the sequence {ff '(No) } will not in general tend toward this 
minimum, since the regular T-invariants do not reduce to the 1-invariants 
(see ref. 1 for examples). Then, any cycle of the Boltzmann equation is 
conditionally asymptotically stable; when starting with suitable initial 
conditions, the mean populations at the Boltzmann level are asymptotically 
periodic, the limit cycle being only defined by the mean initial values of the 
regular T-invariants. 

4 That is, the vectors which have the same projection on the regular T-invariants. 
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4. T O W A R D  M O D E L S  W I T H O U T  P E R I O D I C  B E H A V I O R  

The results of Section 2 indicate that the way to ensure the convergence 
of the Markov process associated to a LGCA [which obeys (P1)-(P3) or 
(P4)] is to ensure the merging of the T-paths into the 1-paths. 

Actually, a necessary and sufficient condition for sequences (fp(n))p~ 
to converge under any initial condition fo is that for any couple of con- 
figurations (m, r) in the 1-path which contains n, we have 

1 
lim f P ( m ,  r ) = - -  

In other words, the transition matrix, usually defined for Markov chains, <8) 
that is always bistochastic (because of the semi-detailed balance) must also 
be regular. 

Thus, for given collision rules we are led to modify the transition 
process. Such modifications have already been proposed by several 
authors/S,9, ~o~ For instance, in ref. 9 (for the FHP  model on the infinite 
plane), a particle is authorized, under proper conditions, to be moved in a 
direction different from its velocity; this ensures that the strictly positive 
translation-invariant fixed points of the resulting Markov process are 
superpositions of Gibbs states. In ref. 5, four copies of the H P P  model are 
considered and the stirring consists in a stochastic switching of particles 
lying in different planes, followed by a rigid translation of each planes. 
This last type of stirring updating was first introduced by Boghosian and 
Levermore ('~ for a one-dimensional LGCA. 

One of the simplest possible modifications consists in introducing an 
independent random variable--say S e { 0, 1 }--which will govern the free 
propagation stage. After the collision step, and on the whole lattice, we will 
perform the propagation if 3 = 0  or another collision if 3 =  1. We will 
denote by ~ the mean expectation of 3. This procedure is close to the one 
proposed in ref. 5, but the stirring updating is replaced here by a collision 
updating. In ref. 5, for 3 =  0 a stochastic stirring updating is performed 
before the streaming updating. 

We then introduce the Markov kernel 

Vn, m ~ W  2, J f ( m , n ) = ( l - ~ ) d ( m ~ - ' ( n ) ) + ~ d ( m ~ n )  (17) 

Let us then assume that the considered automaton can be idealized by the 
Markov process associated to the operator ~ as defined by relation (2a). 
This new kernel also obeys a semi-detailed balance, and Proposition 1 as 
well as relations (11) hold. The case ~ = 0 has been examined in Section 2. 
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4.1. Stability Results 

At each real function f on W we then associate a function f *  by the 
following relation: 

1 
YneW, f* (n )  = Fix(1, f )  = 7-~, E f in ' )  (18) 

I ~ 1 ~  

where ~ is the 1-path, as defined in Section 2, which contains n. As in 
Section 2, we deduce that f *  is a fixed point of ~. The operator Fix(l, �9 ) 
is still a projector on the subspace of the fixed points of ~2. It now turns out 
that the result of Proposition 2 can then be strengthened. The following 
proposition, proven in Appendix F, holds. 

Proposition 6. We suppose that 0 < ~ ~< 1 and that the transitions 
probabilities { d }  satisfy properties (P1)-(P3) or only property (P4). Let 
f be a density and f *  be the fixed point of ~ associated to f by relation 
(18). Let (f,,) be the sequence defined by f0 = f a n d f , +  t =  ~(f,,). Then, (Jr,) 
converges to f* .  

This proposition shows that, under this very simple modification of 
the transition process, the fixed points of ~ are conditionally asymptoti- 
cally stable in the following sense. If f *  is a fixed point of ~ and if 
f 0 = f  * +df  is a density such that the mean value of df is zero on each 
1-path, then the sequence (f,,) relaxes uniformly to f *  on W. Moreover, 
this proves that the sequence of operator ~2" converges to Fix(l, .  ) (since W 
is finite on the set of all complex functions defined on W) when n goes to 
infinity. This proposition also indicates that there are no periodic solutions 
to the Liouville equation f , + l  =~(f , , ) ,  hence, there are no specific fixed 
points for iterated processes ~k: they are all fixed points of ~. The only 
eigenvalue of ~ with a unit modulus is 1 and the corresponding eigenspace 
is asymptotically stable. 

Another feature of the modified process is that any stationary state 
and hence any 1-path is invariant under the shift ~ [see relationship 
(F2)-(F3) of Appendix F].  

The global linear 1-invariants are, as in the previous sections, the 
linear fixed points of ~2. They are defined by relation (2). They are all 
regular and the following proposition holds (without any restriction on the 
transition probabilities but the semi-detailed balance). 

Propos i t i on  7. We suppose that 0 < ~ < 1. A vector �9 of [ •b] ~ is 
a linear 1-invariant if and only if it satisfies ~ r  and V0~e~, 

~(00 ~ K,oc. 

822/81/I-2-28 
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This proposition is established in Appendix F. 
At the Boltzmann level we are still interested in sequences of factorized 

densities which satisfy the recurrence relation (8): 

P,+ i = Fact(t2(p,)) = [Fact o s  (Po) 

But the Markov kernel is now given by relation (17). The evolution 
equation for the mean populations is 

~ -~N( t  + 1) - N ( t )  

=A(N(t))+~[(~-'Y(t)-N(t))+(~-'zl(N(t))--A(N(t)))] (19) 

where A(N(t)) is the vector of [Rb] ~ whose components are 6j[N(0q t)] 
[see relation 6b]. For the case ( = 0  relation (19) is the usual Boltzmann 
equation. It can still be written as N ( t +  1 ) = ~ ( N ( t ) ) ,  where ~ is a C ~ 
function on (R b) ~'. The mean value of any linear 1-invariant is conserved, 
that is, 

Vq~ ~ Kg',', V t ~ ,  <@, N(t)> = <q~, N(O)> 

From proposition 7, a factorized density p0(n) = [ exp(< q~, n> ) (t > 0) is a 
fixed point of [Fact~ s  if and only if �9 is a regular 1-invariant or equiv- 
alently if and only if it is a factorized fixed point of s These factorized 
fixed points are, for a wide class of models, the only ones which leave the 
information stationary for the "Boltzmann process" (8); the following 
lemma (proven in Appendix F) holds. 

l . e m m a  2. The kernel • is given by relation (17) with 0 < ~ < 1. 

1. If the transition probabilities { d }  obey properties (P1)-(P3) or 
only property (P4), let p be any density; then the equality ~ ( s  .~(p) 
stands if and only if p is a fixed point of ~. 

2. If the model has a regular configuration, let p(n) = [ exp(< r n>) 
([ > 0) be any factorized density; then the equality ~ [Fac t ( s  = ~(p)  
stands if and only if p is a factorized fixed point of ~. 

As in the study of the asymptotic periodicity, this lemma will provide 
the tools to show the stability of the (strictly positive) fixed points of 
[ Fact o s ]. 

We consider a LGCA which obeys properties (PI) - (P3)  or only 
property (P4), or which has a regular configuration. The kernel J f  is given 
by relation (17) with 0 < ~ < 1. The following proposition holds. 
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Proposition 8. Let No be a mean population vector in (]0, 1[b) ~ 
and let D= be the set of vectors N in (]0, l[b) ~, which satisfies 

Vq5 ~ K~,~', (qs, N )  = ( ~ ,  No) (20) 

Let Neq E(]0, 116) ~ be the unique vector of 0: such that Log(N~q)E ~g'~ 
and let IF, be the open neighborhood of Neq in 0: defined in Lemma 1 .  
Then, if No e F,,, the sequence N,, = o~"(No) converges toward N~q. 

Conversely, let NCq be a mean population vector in (]0, 1[~ ~ 
such that the density p(n)=p(O)exp({log(Nl,,q, n) )  is a fixed point of 
[ F a c t o r ] .  Let F be the set of vectors N in (]0, l[b) ~ which satisfy (20) 
Then, log(Nl~q) is in ~ ' l  I and there exists an open neighborhood of N~q in 
0: such that for each No in this neighborhood, the sequence N,, = ~-"(No) 
converges toward N~q. 

The proof of this latter proposition is similar to that of Proposition 5 
and will not be detailed. It ensures, in these models, the stability of the 
Gibbs states of ~. Similarly, let No be a mean population vector in 
(]0, 1[~ ~ and let us assume that the sequence {o~'(No)} stays in a com- 
pact subset of (]0, 1[ b)~. It then follows that it is necessarily convergent 
to the unique Gibbs state associated to No. This equilibrium state now 
corresponds to the absolute minimum of the information among the 
densities whose mean populations satisfy (20). Moreover, it is uniquely 
defined by the averages of the regular 1-invariants. Then, we have avoided 
the spurious asymptotic periodic behavior at both the Liouville and the 
Boltzmann level of description. 

4.2. H y d r o d y n a m i c  E q u a t i o n s  

Let us now say a few words about the hydrodynamics of these 
modified LGCA. We considered a six-velocity FHP model. The velocities 
(el ..... c6) all have the same modulus c; they are obtained by successively 
rotating c~ through angle ~/3. Starting with the Boltzmann equation (19), 
we have performed a Chapman-Enskog procedure in order to access the 
transport equations. The zeroth-order expansion yields the Euler equations. 
They are exactly the same as those of the nonmodified model provided 
there is a time rescaling by a factor ( 1 - ~ ) .  That is, after resealing [i.e., 
t * = ( 1 - ~ ) t ]  we have 

Op 
Ot---;+ V. (pv) = 0  

- ~  + V. N2qc j =0 
I 

where N~ q is the local equilibrium mean population associated to (p, pv). 
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The first-order expansion yields Navier-Stokes-like equations for the 
lattice gas. For the balance of momentum, up to leading order in mean 
velocities and density gradients, one obtains 

Ot---~+V. N~qc/ |  = V . ( p [ V v + ' V v - d i v ( v ) I ]  + 2 V . ( v ) I )  
I 

where p is the shear viscosity, given by ll =Pooh + ( ~ -  �89 Peon being 
the usual collisional viscosity of the nonmodified F H P  model multiplied by 
the factor ( 1 -  () and the discretization viscosity/zdis = (~-�89 being 
eventually positive. There appears a nonzero bulk viscosity 2 equal to 
,~pc2 /4. 

For the mass balance we obtain 

0t--~+ V. ( p v ) = V .  ~V.  N'~q cj (~) cj 
I 

Up to leading order in mean velocities and density gradients we have 

-~V. N~q ej | c/ ~ D V p  
2 i 

where the self diffusion coefficient is D = 2/,o = ~c2/4. 
The presence of a bulk viscosity and of a spurious mass current are 

due to the modification of the model. Their actual influence on incom- 
pressible hydrodynamics needs to be evaluated by direct simulations. 

A P P E N D I X  A. PROOF OF P R O P O S I T I O N  2 

The following lemma is satisfied with any Markov kernel under the 
semi-detailed balance. 

L e m m a  A1. Let fo be a real function on W and (f,,) be the 
sequence defined by relation (3). Then we have 

Ve>O, 3 N e N ,  p>~N and J f ( m , n ) ~ O ~ l f p + l ( n ) - - . f p ( m ) [ ~ e  

(A1) 

by 
ProoL At each configuration n, we associate a number k(n) defined 

k(n) = 1 if 3f~(n, n ) =  1 

k(n) = inf{ 3f'(m, n) X ( r ,  n)} if ~ff(n, n) ~ 1 
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The Inf is taken over all configurations m and r such that m :~ r and 
Jff(m, n):/:0. We then define k as k = i n f { n E W ,  k(n)}. Since W is finite, 
k is a strictly positive constant that only depends upon the kernel o~r Let 
e > 0, be given. Then there exists an integer N such that for any n and any 
p >1 N the following inequality holds (see Appendix C in ref. 1 ): 

/ 2 e \  1/2 
~ ( m ,  n) :~0, X(r,n)~O~lfp(m)-fp(r)l<~-ff) (A2) 

We then consider any given n in W. If  o,T'(m, n):~0, we have 

fp+ , ( . / -  fpIml = E fpIm// C In', "/ 
W 

Using (A2), this last relation finally yields (A1). I 

The next result is the key for the asymptotic periodicity. Contrary to 
the previous one, it depends upon the transition process. 

Lemma A2. We suppose that the transitions probabilities {~'} 
obey (P1)-(P3) or only property (P4). Then, for every initial real function 
f0 and any integer k, we have 

V e > 0 , ~ N ~ N ,  p>~N=,Vn~W: Ifp+k(~k(n))--fp(n)l<~e (A3) 

This lemma expresses that the process tends to be only propagative. It is 
proven in ref. 1 for the case k = 1. In the general case one applies k times 
(A3) f o r k = l .  I 

Proof of Proposition 2. Let (f,,) be a sequence of real functions on 
W defined by (3). Applying Lemma A2 to k = T yields 

8 
Ve>O,~N'e~, p>~N'~Vm~W" ]fp+r(m)-fp(m)l<~T+---- f (A4) 

where N'  depends upon e, fo, and T. Let n, m be such that oefr(m, n ) 5 0 .  
From the definition of z(r r we then deduce that there exists a finite 
sequence n o = m , n ~  ..... n r = n  of configurations such for each i, 
~ r  i --~ ~ - I ( n i + l )  ) =/=0. 

From Lemma A1 we can choose an integer N" which depends upon 
t, fo, and Tsuch  that p>~N" implies I fp+ i+ l (n i+ l ) - fp+ ; (n ; ) l  ~ c / ( T +  1) 
for each i = 0 ..... T -  1. 

We then sum these inequalities to obtain Ifp+r(n)-fp(m)l~ 
Te/(T+I). By setting N= sup(N', N") and using (A4), we then deduce 

V e > 0 , 3 N ~ [ ~ ,  p>~N and Jfr(m,n))~O~lfp(m)--fp(n)l<~e 
(A5) 
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Since a T-Path  is finite and since there is a finite number  of  T-paths, we 
then deduce by applying (A5) a finite number  of  times that  

Ye>O, 3NeN,  p>~N~Vn,  m~W2:xr(n,m)[fp(m)- fp(n) l<~e (A6) 

where x r (n ,  m) is 1 if n and m are in the same T-path, and 0 otherwise. 
Let us now consider the sequence (f,,T) extracted from (f,,). Let n be 

a given configuration, and let ~ r  be the T-path which contains n. For  any 
n' in ~ r  we have Fix(T, f o ) ( n ' ) =  Fix(T, fo)(n). F r o m  the definition of the 
opera tor  Fix and since ( i t ) r  preserves the measure  of  the T-paths we will 
have, Vn ~ r~, 

I~T I(Fix( T, fo)(n) - f , ,r(n)) 

= ~ (Fix(T, fo ) (n ' ) - f ,T (n ) )  
n, E ~ar 

= • (fo(n')--f,T(n))= ~'. 
n '  ~ E,,~7 - n ,  ~.~.~l. 

This last equality and (A6) yield 

( f , , T ( n ' )  - f , , : , - ( n ) )  

Ve>O, 3 N e  ~ ,  n>~N~VneWl f . r (n ) - -F ix (T ,  fo)(n)]<~e (A7) 

We finally deduce that  the sequence (f,,T) converges on W to Fix(T, fo ). 
The same result applied tof~,fz,...,fT_ ~ shows that  each sequence (f,,T+k), 
0 ~ < k <  T, converges uniformly on W to Fix(T, fk). Since T is finite, and 
considering the definition of the sequence (g,) ,  we deduce the convergence 
of (f,) to (g,,). 

For  any integer n, we then have 

g,, + t -- i t (g , )  = g,, +, -- it(L,) + i t ( f ,  -- g,,) = g,, +1 --f,, +, + it(L, -- g,,) 

The sequence (f,,) converges to (g,,), so, from the continuity of  it and since 
(g,,) is periodic, we then deduce that  for any integer n, g,,+l = it(g,,), which 
proves that  Fix( T, �9 ) and it commute.  But each g,, is a fixed point of (it) T 
and lemma A2 finally yields relation (14). The Cesaro convergence is then 
obvious. II 

APPENDIX B 

Proof of the Factorization Property of the Fixed Points of the 
Boltzmann Operator. 

Let Po be a factorized density and let us consider the sequence 
p . + l =  F a c t [ i t ( p . ) ] ;  (p . )  will be a k-periodic sequence if and only i fpo  is 
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a fixed point of [ Fact o s ] k. It is known from information theory that, for 
any density p, we always have .~(Fact(p)) ~< -~(p), the equality standing if 
and only if F a c t ( p ) = p .  Hence, from Proposi t ion 1, we have 

-~(P, + 1 ) = .~(Fact[ s ] ) ~< ~(s  ~< .~(p,,) 

Hence, the sequence (-~(p,,)) is then decreasing. But since P0 is a fixed point 
of [Fac t  o ~]k,  (.~(p,,)) is then constant and we will have for each n 

.~(p,, +~ ) = .~(Fact [ ~ ( p , ) ]  ) = -~(~(p,))  -- -~(p,,) 

We then deduce that s is itself factorized for each n. Hence we have 
p , +  ~= ~(p,) .  This implies that (p,,) is a k-periodic sequence of factorized 
densities which satisfies p,,+~ = s  The converse is obvious. 

A P P E N D I X  C 

Proof of the Existence and Uniqueness of Gibbs States for Given 
Mean Conserved Quantities 

1. Let us first prove the uniqueness. Let us suppose that there exist 
two mean populat ion fields N,, and N*, both in the open set ( ]0 ,  l[b) ~, 
which satisfy relations (16). Therefore we will have 

<iog(1Kl,,)-log(N*), N e - - N * )  = 0  

This equality yields 

�9 = 1  

j= ,  L [ (N*) j (~ ) ] J  

But each term of this product  is /> 1 {the function x / (1 -x )  is increasing 
on ]0,1[  }, so the product  is equal to 1 if and only if N e = N * .  

2. Let us now prove the existence. Let then M be the affine subspace 
which contains N o and defined by relation (16a): 

M =  {XE [Rb]-~; V ~ E A  : ( ~ ,  NO> = ( ~ ,  X)}  

Let us denote by IF the convex open set of M: M n ( ] 0 ,  l [b)  z .  The set IF 
is a nonempty s~bset of ( ]0 ,  l [b)  a" (since it contains N~ Its closure, ~, is 
M c~([ 0, 1 ] b)~, and is a convex polyhedron. The function H is then defined 
and continuous on F, furthermore, it is a C~-function on IF. Since F is a 
compact  set in M, the function H has a minimum on F, and this minimum 
is reached on a point Nin f ~ ~. Let us set H(Nin r) = Hin f. 
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In order to prove that  Ni,r is in the open set ~:, let us first assume that  
N~,r is on the boundary  of F. Then at least one of the components  of  N~,f 
is necessarily 0 or 1. Let I o (resp. I~) be the set of  the indices j such that  
the componen t  (Ni,r) j is 0 (resp. 1 ). Since N o is in the open set 0:, and since 
0: is convex, the segment [ N  ~ Ni,r] is in ~ and can be parametr ized as 
N ( x ) = x N ~  with x e [ 0 ,  1]. Let us then set, for any x in 
[0, 1 ], h(x)= H(N(x) ) .  The function h(x) is then differentiable on ]0, 1 [, 
and we will have, Vx s ] 0, 1 [, 

_ [ d h(x)= 2 N~ log + ~ ( 1 - N  ~ ) log 
dx \ l - x N  ~ l - - x ( 1 -  N ~  j ~ lo  jE I I  

+ Z (N~176 Nj(x)  

if;o,;, 1 -- N j ( x ) /  

When x goes to 0 the last term has a finite limit, while the bracket ted one 
goes to - o o ,  since {I0, I~} is nonempty.  Hence there exist a real 0 < a < 1 
and a real b < 0  such that  (d/dx)h(x)<b on ]0,  a[ .  Therefore h ( a ) <  
h(0) = H i , r ,  which contradicts Ni.f  on the boundary  of D:. Hence Ninr is 
in ~. 

Let then VH be the gradient of  H considered as a function on 
(] 0, 1 [ b)z .  Since H is differentiable on ~:, the gradient VH of H, considered 
as a function on (]0,  l [b)  z is such that <VH(Ni.r) ,  fiN> = 0  for any vector 
~N in the subspace or thogonal  to A. Since VH(Ni,r)  = log (Ni,r), the vector  
log(Ni.r), is then in A. 

Now, if this min imum of information were reached at two distinct 
points of ~, these points would be, as we have seen, both  in the open set 0:. 
Therefore two points would exist which satisfy (16b), which is absurd. 
Hence Nin f is the expected point  Ne. II 

Proof of Lemma 1. Let us keep the notat ions used in the p roof  of  
the previous proposit ion.  The set F considered in this l emma is obviously 
the same as that considered in the previous proof; it is an open subset 
of  M. Let 0D: be the boundary  of ~:. It is a compact  set in M. Let then H '  
be the min imum of H on 0D:. It is reached on some point  of  0D:, and from 
the previous p roof  we know that  H ' > H ( N e ) .  Let us then set 
a = H '  - H(Ne). The set U:, is then included in F; moreover ,  since H is con- 
tinuous on D:, it is an open subset of  0:. 

Let then 0 < E < a and let 0:, be the set of  all points N in ~ such that  
H ( N ) -  H ( N e ) <  e. It is obviously an open subset of  0:,. Fur thermore ,  since 
H is continuous the closure ~ of 0:, is included in the set S of  all points 
N in F such that  H ( N )  - H(Ne)  ~< e. Again, since e < a, this last set is in ~:, 
and thus ~ is a compact  subset of  F,.  It  remains to see that  S = ~ .  This 
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is achieved by noticing that, for each N in S - { N e } ,  the function H is 
strictly decreasing on the segment [N, Ne]. Indeed, the hessian of H on 
(]0, l[b) -~ is diagonal on the natural basis and its components are the 
1/Nj(oO(1 --Nj(0r it is then a strictly positive metric. Thus each N in S is 
the limit of a sequence of points in IF,. 

APPENDIX D 

Proof of  Proposition 4. 1. For models which obey (P1)-(P3) or 
simply (P4), since any global linear k-invariant is a regular one, the whole 
set of global linear k-invariants coincide with the boltzmann k-invariants. 

2. For models which have a regular configuration we will simply 
prove that any strictly positive fixed point of [ Fact o ~ ]k is associated with 
a regular k-invariant. 

Let then p(n) = ~ exp(( ~, []) )(f > O) be a factorized density and let us 
assume that .~(p)= .~(9(p)) and ~(p) is also factorized. 

Let m 0 be a regular configuration, let {m~}, i>~ 1, be the set of con- 
figurations which differ from m 0 on at most one node and one velocity. If 
L is the number of nodes, it is composed of bL configurations obtained (see 
ref. 1) by successively permuting in mo a one and a zero node after node 
and on each velocity channel. Let us then suppose that the densities p and 
O(p) are both factorized. We will denote by N and N* the mean popula- 
tion fields of resp. p and E(p). Let us then observe that the set {m~}, i/> O, 
is globally invariant under ~. Let then mk be such a configuration. As 
d(mk-~ mk)7~0, the configuration @--I(mk) has the same property and 
thus d (  ~ -  I(mk)--, ~ -  ~(mk)):/: 0. But since .~(p) = .~(~(p)), from relation 
(1 la) we deduce that 

d ( m '  -~ ~ -  t(mk) ) 4:0 ~ p(m')  = p ( ~  -l(mk) ) 

This yields, by evaluating i~(p)(mk), ~2(p)(mk)=p(~--l(mk)), that is, 

b 

l~ I-[ FN;( ~)-[[(''k)jta)] [1-N*(oQ]  [ I - I " 'k l j t~~ 

b 

= I-I 1-[ [Nj(=-cj)]  t'"''j(='J [1 - -Nj (=- -c j ) ]  t'-('''j'='] 

But we have also ~.(p)(mo)=p(~-l(mo))=p(mo).  Let us fix one 
couple (j, 00. There exists a configuration in {mi}, say ink, which 
differs from m o only through the component (mk)J(=). this yields 
p(mo)[N* (0r - -  N j ( o r  - c j ) ]  = O. 
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Hence we have N * =  ~N.  We then deduce from relation (6a) that 
u &(N(c~)) =0.  but for any vector U in ]0, 1[ b and any model with semi- 
detailed balance the following propositions are equivalent(~'4~: 

6 ( U ) = 0  (Dla)  

log(U) ~ I~to ~ (Dlb)  

(&(U), log(U))  = 0 (Dlc) 

Since ~ = log(N), we then deduce that V~, ~(~) is in ~toc. 
Now, i fp  is a fixed point of [Factos k, any ~,(p) is then factorized 

with ~(p)=~(~'(p))=~([Facto~]'(p)). Hence, we can successively 
apply the previous analysis to show that the mean population field of 
[Facto~2]'(p) is ~ ' N  and that V~x, ~'~(c~) is in INto r But since 
p = [ F a c t o g ] k ( p )  it follows that ~ k ~ = ~ .  Finally, �9 is a regular 
k-invariant. Since ~ r  is the identity map, p is also a fixed point of 
[Facto.9]V(p) and �9 a regular r-invariant (r is the l.c.d, o f k  and T). 1 

APPENDIX E 

Proof of Proposition 5. l. Let us first observe that the sequence 
(N,,) is defined by the recurrence relation N, = [~r],, (No) . Let p,, be the 
factorized density whose mean population is N,.  Let us then set 
H,,=H(N,)=~(p,,). We have H,,+l =~.(p,,+l)=~([FactoY~]r(p,,)). We 
will have H,+~ <~H,,. Hence, the sequence (H,,) is decreasing and since it 
is bounded below, it is converging to a limit, say H*. Moreover, if 
H(No) -H(NcTI )  < a t ,  we know from Lemma 1 that the whole sequence 
(N,,) stays in a compact subset of (]0, l[b) "~'. We can then extract from 
(N,) a sequence (N,,k) that converges to a field N* where N* is in 
(]0, l[b)~.. But f f  is continuous and we then deduce that the sequence 
(o~r(N,,k)) converges to .~T(N*) .  But the sequence (,~r(N,,k)) is also 
extracted from (N,). Hence, we will have: H ( ~ r ( N * ) ) =  H ( N * ) = H * .  Let 
then p * = ~ e x p ( ( ~ ,  n ) )  be the factorized density associated to N*. We 
have the inequalities 

H* = H(o.~T(N*)) = .~([ Fact o ~t] T ( p , ) )  

~< -.- ~<.~([Facto ~](p*))  ~< g(~2(p*)) 

~<.~(p*) = H(N*) = H* 

So we deduce that the successive iterates s ~2"-(p*) ..... ~r(p,) are all 
factorized and that .~(p*) = SS(~(p*)) . . . . .  ~(s We then deduce 
the following: 
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If the model has a regular configuration, we have then seen in 
appendix D that, for any t, the mean population field of [Facto s  (p*) 
is ~ ' N *  and that Va, ~ '~ (a )  [with ~ =log(IKI*)] is in K~oc. If the model 
satisfies properties (Pi), the same result comes from the Lemma E1 given 
below in combination with the equivalences (DI). Hence p* is a fixed point 
of [Facto s  and from Proposition 4 we deduce that log(lq*)= ~ is in 
Kgt r. Since B r =  ~gl r, we have 

V ~  Kgl r, < ~, N,,> = ( t/,, No > (El) 

Hence, on going to the limit in this expression and from Proposition 3, we 
deduce that N* is the unique mean population, denoted Ntrl in the 
proposition, which gives the absolute minimum of the information among 
the points which satisfy (El). Hence H* is the absolute minimum of the 
function H(N), reached inside the open set: 

F =  {N~ (]0, 1[ )b)~; V ~  K~'~ T, ( ~ ,  N> = (q), No>} 

The end of the proof is then achieved by standard arguments using the 
strict convexity of H on the compact subset of F which contains the 
sequence (N,,) and N*. Indeed the Hessian of H on (] 0, 1 [ b)~ is diagonal 
on the natural basis and its components are the 1/Nj(~)(1-Nj(a)).  Let 
m > 0 be the upper bound of the set of scalars {2Nj(ct)( 1 -Nj(a))}j .~ when 
N belongs to the compact subset of F: H ( N ) - H ( N * ) ~ < H ( N 0 ) - H ( N * )  
(see Lemma 1). On this subset, the inequality H ( N ) - H ( N * ) ~ < e  implies 
( N -- N * ,  N - N *  > <~ me, which yields the convergence of (N,,) to N* (one 
writes an order two Taylor expression of the function H, on the segment 
[N*, N],  with an integral rest). Finally, since T is finite and ~ conti- 
nuous the sequence {~'(N0)} tends toward the T-periodic sequence 
{~'(N,T,)}. I 

L e m m a  El.  We suppose that the transition probabilities {~r obey 
properties (P1)-(P3) or only property (P4). Let f b e  any density. 

1. The equality .~(s .~(p) stands if and only if p satisfies 

s  

2. Furthermore, the equality -~((9) k (p))=-~(p) stands for a given 
k/> 1 if and only if p satisfies 

Vi, 1 <<.i<<.k, s =po ~ - i  
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Proof. 1. If a density f satisfies s =po  ~ -1 ,  then a direct evalua- 
tion gives -0(s  ~(p). Conversely, if .~(s  let us then sum 
relation (11A) over n". This yields 

Vn, n' e W z , ~r n)(p(n') - s = 0 (E2) 

Let n be a configuration. If we have ~ ' ( ~ - l ( n ) ~  ~-~(n)) : / :0 ,  relation 
(E2) then implies that s  So point 1 is proven with 
property (P4). 

If we have d ( ~ - ~ ( a ) ~  ~ - J ( n ) ) = 0 ,  we then use property (P3) and 
the semi-detailed balance to deduce the existence of at least two configura- 
tions m :/: r such that 

~r ~ ~ - l ( n ) )  :~ 0, .~'(r--, ~ - I ( n ) )  # 0 

From (E2) we then know that s  But from properties 
(P1) and (P2) we also have 

o~r --* r) # 0, ~ r  I(n) --, r) :~ 0 

By using again ( E2 ), we then obtain ~(p)( 6 ( r )  ) = p(m ) = p( ~ - 1( n ) ). Thus 
we deduce that s  p (~ - t (n ) ) .  So point 1 is proven under properties 
(P1)-(P3). 

2. Since the sequence (0((9)"(p)))  is decreasing, the equality 
.~((s ( f ) )  = _~(f) implies 

Vi, 1 <~i<k, .~((s (p)) . . . . .  .~((~2)i(p)) . . . . .  ~(s  =-0(p) 

We apply successively the previous result and deduce point 2. Conversely, 
a direct evaluation of O((L) k (p)) when s  ~ - k  gives 0(P). II 

APPENDIX F 

Proof of Proposition 6. We will begin with the following relation, 
obtained in the proof of lemma AI: 

Ve > 0, qNe I~, p>~N~VneW: .~ (m ,n )~O,o~C ' ( r , n )#O  

= ]fe(m)--fe(r) l  ~<e (F1) 

Let then n be a fixed configuration and let us assume that • ( m ,  n ) ~ 0 .  If 
~r n ) 5 0  and since now ~ # 0 ,  we then have X ( n ,  n}#0 .  Hence from 
the previous implication we deduce that I./~,(m)-fp(n)l ~< e. In the opposite 
case, if d ( n - - ,  n )=  0, we deduce the existence of two configurations r # r' 
such that ~QC(r-~ n):~0, d ( r ' ~ n ) # 0 .  Hence we will have d ( n - - , r ' ) # 0 ,  
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d ( r ~ r ' ) # 0  and (F1) implies I fp(r ) - fp(n) l  ~<e. But since ~r n):/:0 
and 3f'(m, n)4=0 we also deduce from (F1) that I fp( r ) - fp(m)l  ~<e and so 
I fp(n) - fp(m)l  ~< 2e. Hence we always have 

Ve > 0, 3Ne  [~, p>~N~Vne"#/ ' :3q'(m,n)#O~lfp(m)-fp(n)l<<.e 

Let us denote by ~ (n )  the 1-path which contains n. Since ~/V" is finite, there 
exists a fixed bound M such that 

Ve>0, 3N~ ~, p>~N~Vn~~ m ~ : ( n ) ~  Ifp(m)-fp(n)l <~Me 

Summing this last relation over : ( n )  finally yields 

Ve>0, 3N~ ~, p>~N; Vn ~ 'g/, Ifp(n)-f*(n)[ <~e 

Then, ( f , )  is convergent to f *  on W. 

Proof of  Proposition 7. Let f b e  a fixed point of 52. Let us show that 

Vn, 17' ~ ,//:2, d ( n  ~ n ')(f(n)  -- f (n ' ) )  = 0 (F2) 

Vn ~ "/V, f (n)  = f ( ~ n )  (F3) 

First, let us assume that f is a density. From Proposition 1 we have 

52(f) = f ~  Vn, n' EW z, 

((1 --  ~) ~4(n' --* ~ - l ( n ) )  + ~.~'(n' ~ n ) ) ( f ( n ' )  - - f ( n ) )  = 0 

For ~ # 0, the relation .~'(n'--+ n):/: 0 obviously yields f ( n ) = f ( n ' )  and (F2) 
is proven. Using then (F2) and Definition (2a) we deduce that 

f(n) = 52(f)(n) = (I --~) ~ f(n') ~/(n' ---, t~- l(n)) + ~ ~ j(n') ~#(n' ---, n) 
W W 

= ( 1 -- ~. ) f ( ~  - ' (n) )  + :_f(n) 

For ~ # 1  this yields (F3). Conversely, if (F2) and (F3) hold, then f is 
obviously a fixed point of 52. Second, if f is any real function, we write 
f = f + - f - .  Since 52 is a Markov operator, the positive functions f + and 
f -  are also fixed points of 52. The same holds for their associated densities 
if they are nonzero. Since relations (F2), (F3) are linear with respect to f,  
we then deduce that (F2), (F3) are necessary and sufficient for f to be a 
fixed point of 52. Now, if f is a linear form with respect to n, then its 
associated vector is obviously a regular 1-invariant. 



442 Bernardin and Sero-Gui l laume 

Proof o f / e m m a  2. 1. Case of models which satisfy (P1)-(P3) or 
(P4). When p is such that . ~ ( 9 ( p ) ) = ~ ( p ) ,  the sum over n" of relation 
( l l a )  gives for k =  1 

Vn, n' ~ W  2 , o,Y" (n', n) [ s - p(n')  ] = 0 

Since ~ :/: 0, this yields: d ( n '  --* n)[ 9(p)(n) - p(n ' ) ]  = 0 
The previous relation implies that ~ ( p ) ( n ) =  p(n) for any n such that 

d ( n  ~ n) :#0. Hence p is a fixed point of ~2 for any model obeying (P4). 
Let us now consider the configurations n such that d (n- -*  n ) =  0. For 

models obeying (P3) and the semi-detailed balance, there exist at least two 
different configurations m, r such that 

~ ' ( m  --* n) :/: 0 and d ( r - -*  n) :~ 0 

When properties (P2) and (P1) hold it follows that d ( m  ~ r ) :#0  and 
d ( n  --* r) :/: 0. Therefore we will have ~(p)(n) = p(m) = p(r) and ~(p)(r)  = 
p(m) =p(n) ,  then ~2(p)(n)=p(n). Hence p is a fixed point of ~2 for any 
model obeying (P1)-(P3). 

2. Case of models which have a regular configuration. The analysis 
is similar to that of appendix D. Let p ( n ) = t e x p ( ( ~ , n ) )  (~>0)  
be a density which satisfies .~[Fact(~2((p))]=.~(p).  We then have 
~[Fac t (P( (p ) ) ]=~(p)=~[~(p)] .  Hence, ~2(p) is itself factorized. By 
using the notations of Appendix D and with a similar analysis we prove 
that N* = (1 - 4 )  ~ N  + I N ,  where N* (resp. N) is the mean population of 
~2(p) (resp. p). We then apply the equivalences (1 la) to any configuration 
mk in {m;}, and deduce that p ( ~ - ' ( m k ) ) = p ( m k ) ,  which yields N =  ~ N  
and finally N* = N. Hence p is a factorized fixed point of ~2. II 
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